

0277-5387(95)00208-1

REACTION OF $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ WITH $[Cu(PPh_3)_2BH_4]$. CRYSTAL AND MOLECULAR STRUCTURES OF $[Os_3(\mu-H)(\mu-OH)(CO)_{10}]$ AND TWO $[Os_3(\mu-H)(\mu-OH)(CO)_8(PPh_3)_2]$ ISOMERIC CLUSTERS

WINNIE GING-YEE HO and WING-TAK WONG*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 3 February 1995; accepted 5 May 1995)

Abstract—Reaction of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$ in CH₂Cl₂ at room temperature affords $[Os_3(\mu-H)(\mu-OH)(CO)_{10}]$ (1) and two isomers **2a** and **2b** with a molecular formula $[Os_3(\mu-H)(\mu-OH)(CO)_8(PPh_3)_2]$. Clusters **1**, **2a** and **2b** are all air- and moisture-stable and have been fully characterized by IR, NMR, MS and X-ray crystallography. The molecular structures of **2a** and **2b** are different in the substitution positions of the PPh₃.

The chemistry of triosmium carbonyl clusters containing phosphine ligands has been extensively studied. However, phosphine-substituted triosmium clusters containing a hydroxyl group are not well established.¹ The structurally characterized examples are $[Os_3H(OH)(CO)_8(Ph_2PCH_2PPh_2)],^2$ $[Os_3H(OH)(CO)_9(PPh_3)],^3$ $[Os_3H(OH)(CO)_9$ $(PMe_2Ph)]^4$ and $[Os_3H(OH)(CO)_9(PEt_3)].^5$

Herein, we report the reaction of $[N(PPh_3)_2]$ $[Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$, which led to the formation of a range of $[Os_3(\mu-H)(\mu-OH)(CO)_n(PPh_3)_{10-n}]$ (n = 8,9 or 10) complexes.

EXPERIMENTAL

General

None of the compounds reported here are particularly air-sensitive, however, all reactions were carried out under dry nitrogen using freshly distilled solvents. Products were separated by thin layer chromatography (TLC) on silica gel (type 60 GF₂₅₄ Merck 7730) and using dichloromethane-hexane (4:6) as eluent unless otherwise stated. ¹H and ³¹P NMR data were obtained on a JEOL GSX 270 FT-NMR spectrometer. IR spectra were recorded on a BIO-RAD FTS-7 IR spectrometer between 2200 and 1600 cm⁻¹, mass spectra were recorded on a Finnagan MAT 95 mass spectrometer with the fast atom bombardment (FAB) technique. Spectroscopic data for the clusters **1**, **2a**, **2b** and **3** are given in Table 1.

The complexes $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]^6$ and $[Cu(PPh_3)_2BH_4]^7$ were prepared by literature methods.

Reaction of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$

A red solution of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ (100 mg, 70.6 mmol) in CH₂Cl₂ (20 cm^3) was stirred with $[Cu(PPh_3)_2BH_4]$ (43 mg, 70.6 mmol) in a 1:1 ratio at room temperature. The colour of the solution changed from red to orange-yellow and the solvent was evaporated in vacuo after 1.5 h of stirring. The residue was then redissolved in CH_2Cl_2 (2 cm³) and separated by TLC. Five products were obtained. They $[H_2Os_3(CO)_{11}]$ were (5%, $R_{\rm f} = 0.90$, [H(OH)Os₃(PPh₃)(CO)₉] (3) (5%, $R_{\rm f} = 0.80$), isomers of **2a** and **2b** (10% yield, $R_{\rm f} = 0.50$ and 0.55, respectively) and 1 (2%, $R_{\rm f} = 0.30$). Complexes **2a** and **2b** were recrystallized

^{*}Author to whom correspondence should be addressed.

Cluster	IR (cm ⁻¹), v (CO)	'H NMR (δ)	FAB MS $(m/z)^{a}$
1	^b 2111 (w), 2069 (vs)	^d 0.20 (s, 1H, OH)	874 (874)
	2060 (s), 2023 (vs)	-12.75 (s, 1H, OsH)	
	2000 (s), 1989 (s)		
2a	^c 2067 (m), 2022 (s)	$^{d}7.55 (m, 30H,PPh_{3})$	1342 (1342)
	1986 (s), 1966 (m)	-1.63 [t, $J(PH) = 3.66$ Hz, 1 H, OH]	
	1950 (m)	-10.90 [t, $J(PH) = 6.41$ Hz, 1 H, OsH]	
2b	^c 2068 (m), 2004 (s)	^d 7.50 (m, 30H, ––PPh ₃)	1342 (1342)
	1988 (s), 1952 (m)	-1.30 [d, J(PH) = 3.9 Hz, 1 H, OH]	
	1930 (m)	-11.90 [dd, $J(PH) = 6.9$, 33.5 Hz, 1]	H,
		OsH]	
3	^c 2120 (vs), 2092 (m)	$^{d}7.4$ (m, 15H,PPh ₃)	1108 (1108)
	2052 (s), 2005 (s)	-1.48 [d, $J(PH) = 4.4$ Hz, 1H, OH]	
	1972 (s), 1942 (s)	-12.45 [d, $J(PH) = 7.33$ Hz, 1H, OsH]	

Table 1. Spectroscopic data for the clusters 1, 2a, 2b and 3

 a M⁺ = parent molecular ion based on 192 Os and calculated values in parentheses.

^b Recorded in n-hexane at 298 K.

^{\circ} Recorded in CH₂Cl₂ at 298 K.

^{*d*} Recorded in CD_2Cl_2 at 298 K.

vs = very strong, s = strong, m = medium, w = weak, s = singlet, m = multiplet, t = triplet and dd = double doublet.

from a CH₂Cl₂/n-hexane mixture at -10° C to give orange and yellow crystals, respectively. Complex 1 gave orange crystals upon recrystallization in CH₂Cl₂/n-hexane over a period of 2 days.

X-ray diffraction studies

Crystal data and collection parameters for 1, 2a and 2b are summarized in Table 2. The intensity data for all compounds were collected at room temperature on a AFC7R four-circle diffractometer using Mo- K_{α} radiation ($\lambda = 0.71073$ Å). Data were corrected for Lorentz, polarization effects and absorption correction by the ψ -scan method⁸ was also applied. All structures were solved by direct methods (SIR88)⁹ and difference-Fourier techniques and refined by full-matrix least-squares analysis (Os, P anisotropic). Hydrogen atoms were generated in their idealized position (C-H, 0.95 Å), while hydride atoms were estimated from potential energy calculations.¹⁰ All calculations were performed on a Silicon-Graphics computer using the TEXSAN¹¹ program package. Tables of coordinates, bond lengths, angles and structure factors for all compounds have been deposited with the Editor as supplementary materials.

RESULTS AND DISCUSSION

 $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ reacted with [Cu $(PPh_3)_2BH_4]$ in CH₂Cl₂ at room temperature giving two new compounds (**2a** and **2b**) in moderate yields.

 $[H_2Os_3(CO)_{10}]$, 1 and 3 were obtained in low yields (less than 5%). However, when the reaction was carried out in a dry ice/acetone bath, only 1 and 3 were obtained in higher yields (approximately 30% each). The formation of 1 is most probably due to the presence of a trace amount of water in [Cu (PPh₃)₂BH₄]. In this reaction, complex 1 was thought to be an intermediate in which the disubstituted phosphine complexes were formed by nucleophilic substitution. A proposed mechanism for the reaction is shown in Scheme 1.

Complex 1 is frequently isolated as a side product from the reaction of triosmium complexes. However, structural characterization of this cluster had not previously been reported. Complex 1 crystallized in the monoclinic system in CH_2Cl_2/n -hexane mixture over a period of 2 days. The molecular structure of 1 is depicted in Fig. 1 and some selected bond parameters are presented in Table 3.

¹H NMR of **1** at 298 K shows two high-field singlet signals, which are due to the metal hydride at δ – 12.75 and the hydroxyl proton at δ 0.20. The Os(2)—O(11) and Os(3)—O(11) bond lengths are both 2.12(1) Å and the Os(2)—O(11)—Os(3) angle is 83.3(4)°. The dihedral angle between the plane defined by Os(1)—Os(2)—Os(3) and the plane Os(2)—Os(3)—O(11) is 69.7°. The hydride is bridging the Os(2)—Os(3) edge, as evident from the bending of Os(2)—Os(3)—C(10), 121.3(7)°, and Os(3)—Os(2)—C(5), 123.9(6)°, away from the Os(2)—Os(3) edge.

The ³¹P NMR spectrum of 2a at 298 K shows

Reaction of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$

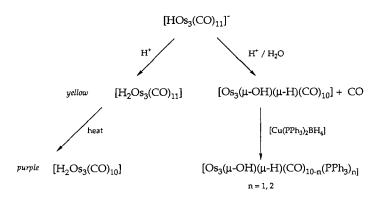

	1	2a	2b
Formula	$C_{10}H_2O_{11}Os_3$	$C_{44}H_{32}O_9P_2Os_3$	$C_{44}H_{32}O_9P_2Os_3$
Formula weight	868.72	1337.31	1337.31
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$ (No. 14)	$P2_1/n$ (No. 14)	$P2_1/c$ (No. 14)
a (Å)	7.357(4)	14.088(3)	15.403(8)
b (Å)	25.012(5)	19.308(2)	16.194(4)
$c(\mathbf{A})$	9.052(4)	16.630(4)	17.910(4)
α (°)	90.0	90.0	90.0
β (°)	107.04(3)	112.14(2)	109.32(4)
γ (°)	90.0	90.0	90.0
$U(Å^3)$	1592(1)	4190(2)	4215(3)
Z	4	4	4
$D_{\rm calc}$ (g cm ⁻³)	3.623	2.120	2.107
μ (Mo- K_{α}) (cm ⁻¹)	239.14	92.01	91.45
Temperature (°C)	23	23	23
F(000)	1512	2504	2504
Data collection range 2θ (°)	4-45	4-45	4-45
Unique reflections	2144	5680	5745
Observed reflections with $I > 3\sigma(I)$	1763	3627	3465
Transmission factors	0.549-1.000	0.685-1.000	0.676-1.000
R^{a}	0.036	0.032	0.047
$R_w^{\ b}$	0.047	0.034	0.041
No. of parameters, P	112	258	258
Weighting scheme ^c	p = 0.005	p = 0.006	p = 0.002
Goodness-of-fit, Sd	2.501	1.352	2.202
Largest shift/e.s.d. final cycle	0.03	0.04	0.09
Residual extrema in final difference Fourier (e $Å^{-3}$)	1.20 to -1.31	0.83 to -0.76	2.40 to -1.40

Table 2. Crystal data and data collection parameters for 1, 2a and 2b

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|.$

 ${}^{b}R_{w} = [\Sigma\omega(|F_{o}| - |F_{c}|)^{2}/\Sigma\omega|F_{o}|^{2}]^{1/2}.$ c Weighting scheme: $4F_{o}^{2}/[\sigma^{2}(F_{o}^{2}) + (pF_{o}^{2})^{2}].$

 ${}^{d}S = [\Sigma\omega(|F_{o}| - |F_{c}|)^{2}/(N_{\rm obs} - N_{\rm para})]^{1/2}.$

Scheme 1. Proposed mechanism for the reaction of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$.

only a sharp singlet (δ , ppm, reference 85% H₃PO₄), indicating that the two phosphorus atoms are equivalent. The metal hydride signal of 2a appears as a broad triplet with equal coupling to the two equivalent phosphorus atoms of the PPh₃ ligands in the ¹H NMR spectrum. The hydroxyl proton resonance is a triplet at $\delta - 1.63$, which is coupled $[J_{(PH)} = 3.66 \text{ Hz}]$ to the two equivalent phosphorus

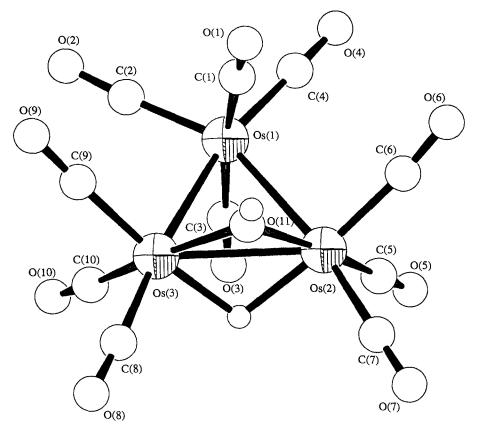


Fig. 1. Perspective view of cluster 1; the hydride position was obtained from potential energy calculations.

atoms. The NMR data suggested a symmetrical structure for complex 2a with the PPh₃ ligands at Os(1) and Os(2), the hydride and OH group all bridging the same Os—Os edge of an Os₃ triangle. In order to confirm this and to establish the full molecular structure of 2a, a single-crystal X-ray study was carried out. The molecular structure is shown in Fig. 2 and some important bond parameters are given in Table 4.

The bridged Os(1)—Os(3) distance of 2.840(1) Å is the longest among the Os—Os bond lengths, which is probably due to the strong steric repulsion of two PPh₃ ligands in equatorial positions. A similar trend has been observed in the structure of $[Os_3H(SPh)(CO)_9(PEt)]^5$ and $[Os_3(CO)_{11}$ {P(OMe)₃}].¹² The two phosphorus atoms of PPh₃ lie in the plane of the Os_3 triangle as they deviate from the plane by 0.0379 Å for P(1) and 0.0083 Å for P(2), respectively.

Cluster **2b** shows high-field ¹H NMR signals: a doublet at $\delta - 1.33$ and a doublet at $\delta - 11.9$, which are due to the OH group and the metal hydride, respectively. The NMR data revealed that the two phosphorus atoms are non-equivalent in this complex. A single-crystal X-ray study was carried out to establish its solid-state structure. The molecular structure of **2b** is shown in Fig. 3 with principal bond parameters being given in Table 5. The two PPh₃ ligands are coordinated at the equatorial positions of Os(1) and Os(2).

In 2b, the three osmium atoms form a closed triangle with the two phosphorus atoms of the PPh_3

Os(1)—Os(2)	2.831(1)	Os(1) - Os(2) - Os(3)	59.9(1)
Os(1)—Os(3)	2.817(1)	Os(1)— $Os(3)$ — $Os(2)$	60.3(1)
Os(2)Os(3)	2.817(1)	Os(1) - Os(2) - O(11)	83.7(3)
Os(2) - O(11)	2.12(1)	Os(1) - Os(3) - O(11)	84.0(3)
Os(3)—O(11)	2.12(1)	Os(2)- $Os(1)$ - $Os(3)$	59.8(1)
		Os(2)-O(11)-Os(3)	83.3(4)

Table 3. Selected bond lengths (Å) and bond angles (°) for 1

Reaction of $[N(PPh_3)_2][Os_3(\mu-H)(CO)_{11}]$ with $[Cu(PPh_3)_2BH_4]$

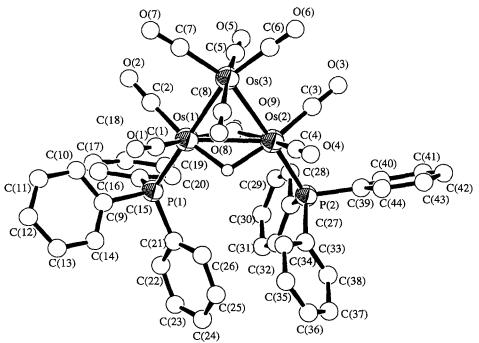


Fig. 2. Perspective view of cluster 2a; the hydride position was obtained from potential energy calculations.

ligands lying essentially in the plane of the Os₃ triangle as they deviate from the plane by 0.065 Å for P(1) and 0.074 Å for P(2), respectively. The Os(1)—P(1) and Os(2)—P(2) bond lengths [2.350(5) and 2.369(4) Å] are similar to the values of 2.361(2) and 2.329(2) Å for the corresponding bonds in $[Os_3H_2(CO)_9(PPh_3)]^{13}$ and $[Os_3H(OH) (CO)_9(PMe_2Ph)]^4$, respectively. The bond parameters within the triphenylphosphine ligand are not significantly different from the free triphenyl-

phosphine.¹⁴ The bridging hydride is not located directly, but its position spanning the Os(1)—Os(3) edge is consistent with bending back of the *cis*-carbonyls [average *cis*-Os—Os—C 126.2(8)°]. The bridge Os(1)—Os(3) distance of 2.798(1) Å is marginally shorter than the other two Os—Os distances found in (3), but the average value of 2.827(8) Å is not significantly different from the average value for the Os—Os bonds [2.877(3) Å] in $[Os_3(CO)_{12}]$.

Reaction of complex 1 with PPh₃ gives complex

Table 4. Selected bond lengths (Å) and bond angles (°) for 2a

Os(1) - Os(2)	2.844(1)	Os(1) - Os(2) - Os(3)	60.1(2)	Os(1) - O(9) - Os(2)	83.7(3)
Os(1) - Os(3)	2.840(1)	Os(1) - Os(3) - Os(2)	60.2(1)	Os(2) - P(2) - C(27)	112.5(4)
Os(1) - P(1)	2.388(3)	Os(1) - Os(2) - C(3)	133.3(4)	Os(2) - P(2) - C(33)	118.0(4)
Os(1)O(9)	2.132(8)	Os(1) - Os(2) - C(4)	120.9(4)	Os(2) - P(2) - C(39)	111.8(4)
Os(2)Os(3)	2.823(1)	Os(1) - Os(2) - P(2)	116.7(1)	C(9) - P(1) - C(15)	105.0(6)
Os(2) - P(2)	2.357(3)	Os(1) - P(1) - C(9)	111.4(4)	C(9) - P(1) - C(21)	100.9(5)
Os(2)O(9)	2.133(8)	Os(1) - P(1) - C(15)	113.4(4)	C(15) - P(1) - C(21)	101.1(6)
P(1) - C(9)	1.84(1)	Os(1) - P(1) - C(21)	122.9(4)	C(27) - P(2) - C(33)	108.1(6)
P(1) - C(15)	1.84(1)	Os(2) - Os(1) - Os(3)	59.6(1)	C(27) - P(2) - C(39)	105.1(6)
P(1) - C(21)	1.84(1)	Os(2) - Os(1) - C(1)	119.3(4)	C(33) - P(2) - C(39)	100.0(6)
P(2)C(27)	1.84(1)	Os(2) - Os(1) - C(2)	132.3(4)		
P(2) - C(33)	1.81(1)	Os(2) - Os(1) - P(1)	120.7(1)		
P(2)C(39)	1.84(1)	Os(3) - Os(1) - O(9)	82.3(2)		
		P(1) - Os(1) - O(9)	97.2(2)		

2853

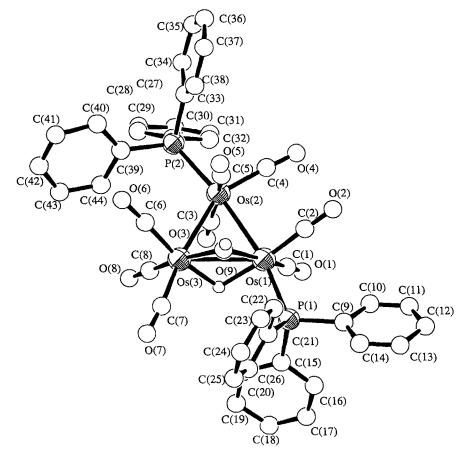


Fig. 3. Perspective view of cluster 2b; the hydride position was obtained from potential energy calculations.

Os(1)—Os(2)	2.839(2)	Os(1)—Os(2)—Os(3)	58.9(1)	C(9) - P(1) - C(21)	101.9(8)
Os(1) - Os(3)	2.798(1)	Os(1) - Os(3) - Os(2)	60.3(1)	C(15) - P(1) - C(21)	105.7(8)
Os(1) - P(1)	2.350(5)	Os(1) - Os(3) - C(6)	130.3(6)	C(27) - P(2) - C(33)	101.8(8)
Os(1) - O(9)	2.18(1)	Os(1) - Os(3) - C(8)	118.9(6)	C(27) - P(2) - C(39)	102.1(8)
Os(2) - Os(3)	2.846(1)	Os(1) - Os(2) - P(2)	172.7(1)	C(33) - P(2) - C(39)	105.2(8)
$Os(2) \rightarrow P(2)$	2.369(4)	Os(2) - Os(1) - Os(3)	60.6(1)		
Os(3)O(9)	2.08(1)	$Os(2) \rightarrow Os(1) \rightarrow P(1)$	169.0(1)		
P(1) - C(9)	1.85(2)	Os(2) - P(2) - C(27)	113.9(6)		
P(1)—C(15)	1.83(2)	Os(2) - P(2) - C(33)	115.5(6)		
P(1) - C(21)	1.82(2)	Os(2) - P(2) - C(39)	116.6(6)		
P(2)—C(27)	1.83(2)	Os(3) - Os(1) - C(1)	119.7(5)		
P(2)—C(33)	1.80(2)	Os(3) - Os(1) - C(2)	136.0(6)		
P(2)—C(39)	1.81(2)	Os(3) - Os(2) - P(2)	113.9(1)		
		C(9)—P(1)—C(15)	102.4(8)		

Table 5. Selected bond lengths (Å) and bond angles (°) for 2b

3 as the only product. However, reaction of 1 with PPh₃ in the presence of the tetraethylammonium borohydride leads to the diphosphine-substituted complexes as observed in the $[Cu(PPh_3)_2BH_4]$ reaction. Therefore, the presence of BH_4^- is believed to

facilitate the nucleophilic substitution of 1 by phosphine.

Acknowledgements—We thank the Hong Kong Research Grants Council and the University of Hong Kong.

REFERENCES

- H. G. Ang, W. L. Kwik and W. K. Leong, *Bull. Sing.* N.I. Chem. 1991, 19, 50.
- S. R. Hodge, B. F. G. Johnson, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans. 1987, 931.
- N. V. Podberezskaya, V. A. Maksakov, L. K. Kedorova, E. D. Korniets and S. P. Gubin, *Koord. Khim.* 1984, 10, 919.
- A. J. Deeming, P. J. Manning, I. P. Rothwell, M. B. Hursthouse and N. P. C. Walker, J. Chem. Soc., Dalton Trans. 1984, 2039.
- E. J. Ditzel, M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans. 1987, 1623.
- C. R. Eady, B. F. G. Johnson, J. Lewis and M. C. Malatesta, J. Chem. Soc., Dalton Trans. 1978, 1358.

- 7. T. N. Sorrel and R. J. Spillame, *Tetrahedron Lett*. 1978, 2473.
- A. C. T. North, D. C. Phillips and E. S. Mathews, Acta Cryst. 1968, A24, 351.
- M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Cryst. 1989, 22, 389.
- 10. A. G. Orpen, J. Chem. Soc., Dalton Trans. 1980, 2509.
- 11. TEXSAN: Crystal Structure Analysis Package. Molecular Structure Corporation (1985) and (1992).
- R. E. Benfield, B. F. G. Johnson, J. Lewis, P. R. Raithby C. Zuccaro and K. Henrick, *Acta Cryst.* 1979, C35, 2210.
- R. E. Benfield, B. F. G. Johnson, P. R. Raithby and G. M. Sheldrick, *Acta Cryst.* 1978, C34, 666.
- D. J. Dunne and A. G. Orpen, Acta Cryst. 1991, C47, 345.